Experience affects the use of ego-motion signals during 3D shape perception.

نویسندگان

  • Anshul Jain
  • Benjamin T Backus
چکیده

Experience has long-term effects on perceptual appearance (Q. Haijiang, J. A. Saunders, R. W. Stone, & B. T. Backus, 2006). We asked whether experience affects the appearance of structure-from-motion stimuli when the optic flow is caused by observer ego-motion. Optic flow is an ambiguous depth cue: a rotating object and its oppositely rotating, depth-inverted dual generate similar flow. However, the visual system exploits ego-motion signals to prefer the percept of an object that is stationary over one that rotates (M. Wexler, F. Panerai, I. Lamouret, & J. Droulez, 2001). We replicated this finding and asked whether this preference for stationarity, the "stationarity prior," is modulated by experience. During training, two groups of observers were exposed to objects with identical flow, but that were either stationary or moving as determined by other cues. The training caused identical test stimuli to be seen preferentially as stationary or moving by the two groups, respectively. We then asked whether different priors can exist independently at different locations in the visual field. Observers were trained to see objects either as stationary or as moving at two different locations. Observers' stationarity bias at the two respective locations was modulated in the directions consistent with training. Thus, the utilization of extraretinal ego-motion signals for disambiguating optic flow signals can be updated as the result of experience, consistent with the updating of a Bayesian prior for stationarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion perception during self- motion: The direct versus inferential controversy revisited

According to the traditional inferential theory of perception, percepts of object motion or stationarity stem from an evaluation of afferent retinal signals (which encode image motion) with the help of extraretinal signals (which encode eye movements). According to direct perception theory, on the other hand, the percepts derive from retinally conveyed information only. Neither view is compatib...

متن کامل

Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

We present a novel approach for unsupervised learning of depth and ego-motion from monocular video. Unsupervised learning removes the need for separate supervisory signals (depth or ego-motion ground truth, or multi-view video). Prior work in unsupervised depth learning uses pixel-wise or gradient-based losses, which only consider pixels in small local neighborhoods. Our main contribution is to...

متن کامل

Motion processing for saccadic eye movements during the visually induced sensation of ego-motion in humans

During ego-motion an observer is often faced with the task of controlling his heading direction while simultaneously registering the movement of objects in order to avoid possible obstacles. Psychophysical experiments have shown that the detection of moving objects is impaired by concurrent ego-motion. We investigated the interaction between ego-motion and object-motion by examining the latenci...

متن کامل

The Visual Priming of Motion-Defined 3D Objects.

The perception of a stimulus can be influenced by previous perceptual experience, a phenomenon known as perceptual priming. However, there has been limited investigation on perceptual priming of shape perception of three-dimensional object structures defined by moving dots. Here we examined the perceptual priming of a 3D object shape defined purely by motion-in-depth cues (i.e., Shape-From-Moti...

متن کامل

Sensor Fusion of Structure-from-Motion, Bathymetric 3D, and Beacon-Based Navigation Modalities

This paper describes an approach for the fusion of 3D data underwater obtained from multiple sensing modalities. In particular, we examine the combination of imagebased Structure-From-Motion (SFM) data with bathymetric data obtained using pencil-beam underwater sonar, in order to recover the shape of the seabed terrain. We also combine image-based egomotion estimation with acousticbased and ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 10 14  شماره 

صفحات  -

تاریخ انتشار 2010